Energy Smart Schools

...and what we can do to get there...

Presented by Scott Jasinski Smart Energy Design Assistance Center (SEDAC)

Presentation Overview

- I. Brief SEDAC Background
- II. Basics of Energy Auditing
- III. Top Recommendations for Schools
- IV. Overview of Incentives
- V. Questions

I. SEDAC Background

- Smart Energy Assistance Center at the School of Architecture's Building Research Council (BRC) of the University of Illinois Urbana-Champaign
- Program sponsored by the Illinois Department of Commerce and Economic Opportunity (DCEO).
- Funded through the Energy Efficiency Portfolio Standard which requires utility companies to reduce energy demand.
- Program targets buildings for Illinois businesses (commercial and industrial), municipalities, schools, and colleges.

II. Basics of Energy Auditing

- 1. What is Energy?
- 2. Analyzing the utility bills
- 3. Benchmarking
- 4. Gather information

What is Energy?

Energy is a substance (or property) which can be converted into work.

What is Power?

Power is energy per a unit of time. Power is a rate.

Water analogy:

Power is the flow of water, where as energy is the amount of water in the tub.

Energy and Power Terms

Btu – Measures thermal energy (natural gas). Raise the temperature of one pound of water 1° F. (1 match)

Btuh – Thermal energy over time

Therm – 100,000 Btu, heat energy sources such as natural gas and steam may be sold in therms.

Watt (**W**) – a measure of electrical power. i.e. energy to heat 1 gram of air 1°C in one second.

Kilowatt (kW) –1,000 watts, it is also equal to **3,412 Btuh**

Kilowatt-hour (kWh) - A kilowatt-hour is the quantity of energy delivered when power flows at the rate of one kilowatt for one hour.

Why Save Energy?

- It is cheaper to invest in energy efficiency than pay for energy over the long term
- Who should get your money? The utilities or your education funds
- Example:
 - ✓ If total annual utilities = \$1.6M
 - √ 10% energy savings = \$160,000
 - ✓ Roughly enough to hire three new teachers, buy 300 new computers or purchase 7,000 new textbooks.

Benchmarking

- How does my building perform compared to others?
- Use your past utility bills to calculate.
- Quick (depends on energy price)
 - \$ per square foot
 - < \$1/sf = good
 - \$1 to \$2 = fair (typical)
 - \$2 to \$3 = room for improvement
 - Greater than \$3 is HIGH!
- More Accurate
 - kBtu/sf per year
 - Use TargetFinder (www.energystar.gov)

Illinois School Benchmarks (K-12)

Utility Analysis

III. Energy Efficiency in Schools

Typical Recommendations focus on:

- Building Envelope
 - Walls
 - Roof
 - Windows
 - Floors
- Lighting
- Heating, Ventilating, and Air Conditioning (HVAC)
- Internal and Process Loads (cooking, hot water, swimming pools, laboratories, food service, vending, etc.)

Lighting

- Lighting Power Density 1.2W/sf maximum.
- <1.0W/sf preffered</p>
- Direct/Indirect lighting helps reduce LPD
- Combine with daylighting wherever possible
- Add controls to allow for lower light levels where possible.

Low Wattage T8s and T5s

- T12 planned phase out
 - Magnetic ballasts no longer made.
 - Lamps July 2012
- Improved lighting quality
- Retrofit has energy savings as high as 40% over standard T8.
- 28W T8s (actually called 32W).
 - Make sure they are compatible with ballasts.
- 25W T8s (also 32W) coming on the market
- T5 Great for new fixtures, harder to retrofit

HID to Fluorescent Retrofit

- Existing System:
 - 400watt High Pressure Sodium and 400watt Metal Halide.
 - Each fixture uses 460 watts (400 for lamp, 60 for ballast)
- Retrofit
 - One-for-one replacement
 - 6-lamp fluorescent
 - Each fixture uses 234 watts (lamps and ballast combined)
 - Light levels increase 10-20%
 - Long life
 - Better visibility

LED Exit Signs

- Payback is quick
- Rebates available
- Very basic lighting energy savings measure
- Chicago approved
- Change from incandescent at >28W to LED at <2 W

Street and Parking Lighting

- Probe Start HID to Pulse Start HID
- Fluorescent, Induction, and LEDs are starting to become viable options.

Occupancy Sensors

- Use them for:
 - Classrooms
 - Offices
 - Restroom lighting
 - Storage Areas
 - Mechanical Rooms
- Get creative use for HVAC in individual rooms or zones.
- Wireless sensors now available

New vs. Existing HVAC System

- New Options
 - Geo Thermal (Ground Source Heat Pump)
 - Most efficient, most expensive
 - VAV (Variable Air Volume)
 - With proper controls are very efficient
 - Cold Climate Heat Pump
 - Potential to be as efficient as GSHP
- Existing Options
 - Boilers Install most efficient
 - Chillers Need proper maintenance and controls
 - RTU to high efficiency Heat Pumps
 - Controls

Boilers and Chillers

- Chillers
 - Shut down chillers when OA temperatures are consistently below 50, and use economizer.
- Water supply temp reset in mild weather
 - Lower boiler water temperature
 - Raise chilled water temperature
- Boilers
 - Don't start boilers until OA temperatures are below 50 consistently.
 - Install modular high-efficiency condensing boilers
 - Consider shutting down boilers used for AC reheat in the summer or resetting the supply water temperature.
- Older Equipment
 - Begin to plan for replacement now!

Demand Controlled Ventilation

- Very large savings!
- Only bring in required amount of fresh air.

Programmable Thermostats

- Set Heating to 68 F, set-back to at least 60 during unoccupied periods. Let condensation be your guide.
- Set cooling to 74, set-up to 80 during unoccupied periods. Developing morning recovery schedule based on demand charges or system capacity.
- Easy to do on systems without reheat.
- Work with recovery times to determine best fit for your building and system
- Useless unless they are programmed.

Electric Motors

Replace motors with premium motors rather than rewinding them.

Immediate replacement

- Any new motor should be <u>premium</u> efficiency
- If used > 4000 hours per year
- Low efficiency or not reliable
- >50 hp and has been rewound 3 times

At failure

- Used 2000 4000 hours per year
- Currently in good condition

Do not replace

- Used less than 2000 hours per year
- Can be rewound (lose efficiency)

Commissioning

- Commission new buildings
- Retro- or Re-commission existing buildings
- Uof I has saved 20% of energy use with paybacks less than 1 year on retrocommissioning

Increase Envelope R-Values

- Insulate Walls to at least R-13 + R-7.5 c.i.
- Insulate Roofs to at least R-20, Attics to R-38.
- Floors over unconditioned spaces to R-30.
- These are code minimums.
- Highly Efficient Buildings will have values which exceed these.

Window Characteristics

- Key parameters:
 - U-Factor ↓
 - Solar Heat Gain Coefficient (SHGC)↓
 - Visual Light Transmittance (VLT)↑
- Low-e
 - The "e" stands for emissivity
 - Transmits light but block heat.
- Gas fill
 - Air, Argon, Krypton

Window Characteristics

- Insulating shades
 - Insulating shades are costly but might be a viable retrofit
- Glare Protection
- Open to let light in when appropriate (turn lights off)
- Close at night to hold heat in
- Low-e films can be added to existing windows
- Tints don't help save energy

Air Sealing

- Air Sealing is just as important in a school as it is in your home – maybe even more!
- Wind and Stack effects are greater in multi story buildings.
- Warm air rises, sucking more air in low while it pushes air out high.

Manage Plug Loads

12:00

- Personal Occupancy Sensor
- Know what can be turned off
- Phantom loads
- Kill-A-Watt meter
 - Great for classes!

Computer Power Management

Vending Energy Management

- Install vending Energy
 Management systems on
 all drink and snack
 vending machines.
- Rebates are available of \$100 per beverage machine and \$30 per snack machine (which cost \$79 each)

Water Savings Measures

- Saves water and energy costs
- Domestic Water
 - Faucet Aerators
 - Low Flow Shower Heads
 - Low Flow Water Closets
 - Low Flow Urinals

Lower Water Heater Temperature

- Set domestic water heater temperature to 120 F. Use gas fired booster heater where higher temp is required.
 - Insulate pipes and tank.
 - ~ 1% savings per degree reduced per 8 hours used

Energy Efficiency then Renewables

 Once you have reduced your loads as much as possible – only then look at renewables!

 Watch for available grants through DCEO, ICECF, and ISBE.

"No-Cost" Strategies

- Benchmark Schools
- Free strategies:
 - Turn off lighting
 - Control thermostats
 - Establish a plug load plan
 - Close windows and doors when HVAC is ON
- Establish a recognition program
- Savings from 10 15%

IV. Overview of Incentives

- Businesses/Organizations:
 - Act On Energy (Ameren)
 - Smart Ideas (ComEd)
 - Natural Gas coming soon
- Public Buildings:
 - DCEO

Incentives are either **standard** or **custom**. Example standard incentives:

- Lighting
- HVAC equipment
- Controls (Occupancy Sensors)

Overview of State Incentives

Additionally the DSIRE website offers various grants and incentives periodically (http://www.dsireusa.org/)

Overview of Federal Incentives (EPAct)

A tax deduction of up to \$1.80/sf for investment in energy-efficient commercial building property as part of new construction or renovations are allowed. Included are:

- Energy efficiency projects
- Renewable energy
- Fuel cells, micro turbines, and combined heat and power

The amount of the deduction is the lesser of \$1.80/sf or the costs incurred or paid for the energy-efficient property.

Qualifying systems include:

- 1) Interior lighting systems (\$0.30-0.60/sf) Most commonly pursued
- 2) Heating, cooling, ventilation and hot water systems (Up to \$0.60/sf)
- 3) Building envelope (Up to \$0.60/sf)

Program has been extended to January 1st, 2014.

